澳门十大正规网站排行榜.welcome

导航
学术报告|
当前位置:首页  科研  学术报告
报告题目: Two-sided heat kernel estimates for Schrodinger operators with unbounded potential
报 告 人: 王健 教授
报告人所在单位: 福建师范大学
报告日期: 2022-09-27
报告时间: 9:00--10:00
报告地点: 腾讯会议账号: 838 138 202 密码:200433
   
报告摘要:

Consider the Schr\odinger operator $L^V=-\Delta+V$ on $\R^d$,where$V:\R^d\to [0,\infty)$ is a nonnegative and locally bounded potential on $\R^d$ so that for all $x\in \R^d$ with $|x|\ge 1$, $c_1g(|x|)\le V(x)\le c_2g(|x|)$ with some constants $c_1,c_2>0$ and a nondecreasing and strictly positive function $g:[0,\infty)\to [1,+\infty)$ that satisfies $g(2r)\le c_0 g(r)$ for all $r>0$ and $\lim_{r\to \infty} g(r)=\infty.$ Two-sided heat kernel (i.e., density function) estimatesfor the associated Schr\{o}dinger semigroup are established.

学术海报.pdf

   
本年度学院报告总序号: 544

Copyright © |2012 澳门十大正规网站排行榜版权所有 沪ICP备042465